Robustness of Auditory Teager Energy Cepstrum Coefficients for Classification of Pathological and Normal Voices in Noisy Environments

نویسندگان

  • Lotfi Salhi
  • Adnane Cherif
چکیده

This paper focuses on a robust feature extraction algorithm for automatic classification of pathological and normal voices in noisy environments. The proposed algorithm is based on human auditory processing and the nonlinear Teager-Kaiser energy operator. The robust features which labeled Teager Energy Cepstrum Coefficients (TECCs) are computed in three steps. Firstly, each speech signal frame is passed through a Gammatone or Mel scale triangular filter bank. Then, the absolute value of the Teager energy operator of the short-time spectrum is calculated. Finally, the discrete cosine transform of the log-filtered Teager Energy spectrum is applied. This feature is proposed to identify the pathological voices using a developed neural system of multilayer perceptron (MLP). We evaluate the developed method using mixed voice database composed of recorded voice samples from normophonic or dysphonic speakers. In order to show the robustness of the proposed feature in detection of pathological voices at different White Gaussian noise levels, we compare its performance with results for clean environments. The experimental results show that TECCs computed from Gammatone filter bank are more robust in noisy environments than other extracted features, while their performance is practically similar to clean environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Robustness of Teager Energy Cepstrum Coefficients for Emotion Recognition in Noisy Conditions

This paper investigated the robustness of Teager Energy Cepstrum Coefficient (TECC) in differentiating emotion categories for speech at different White Gaussian noise levels by comparing the performance with MFCC. Experiments involved the normalized squared error measurement, the multi-classes (four classes) emotion classification and the pair-wise emotion classification. This study included fo...

متن کامل

Auditory Teager energy cepstrum coefficients for robust speech recognition

In this paper, a feature extraction algorithm for robust speech recognition is introduced. The feature extraction algorithm is motivated by the human auditory processing and the nonlinear Teager-Kaiser energy operator that estimates the true energy of the source of a resonance. The proposed features are labeled as Teager Energy Cepstrum Coefficients (TECCs). TECCs are computed by first filterin...

متن کامل

Novel VTEO Based Mel Cepstral Features for Classification of Normal and Pathological Voices

In this paper, novel Variable length Teager Energy Operator (VTEO) based Mel cepstral features, viz., VTMFCC are proposed for automatic classification of normal and pathological voices. Experiments have been carried out using this proposed feature set, MFCC and their score-level fusion. Classification was performed using a 2 order polynomial classifier on a subset of the MEEI database. The equa...

متن کامل

Novel Temporal and Spectral Features Derived from TEO for Classification Normal and Dysphonic Voices

In this paper, various temporal features (i.e., zero crossing rate and short-time energy) and spectral features (spectral flux and spectral centroid) have been derived from the Teager energy operator (TEO) profile of the speech waveform. The efficacy of these features has been analyzed for the classification of normal and dysphonic voices by comparing their performance with the features derived...

متن کامل

Low-complexity and efficient classification of voiced/unvoiced/silence for noisy environments

This paper describes a low-complexity and efficient speech classifier for noisy environments. The proposed algorithm utilizes the advantage of time-scale analysis of the Wavelet decomposition to classify speech frames into voiced, unvoiced and silence classes. The classifier uses only one single multidimensional feature which is extracted from the Teager energy operator of the wavelet coefficie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013